
A Hardware Design for Linear Equation
System Solving of VVC Affine ME

Denis Maass, Marcello M. Muñoz, Murilo Perleberg, Marcelo Porto, Luciano Agostini
Graduate Program in Computing

Video Technology Research Group - ViTech
Federal University of Pelotas - UFPel, Pelotas, Brazil

denismaass7@gmail.com, {mmmunoz, mrperleberg, porto, agostini}@inf.ufpel.edu.br

Abstract—The Affine Motion Estimation, introduced by the
Versatile Video Coding standard, contributes to the significantly
enhances compression efficiency. On the other hand, it requires
a huge computational effort that makes mandatory the use
of dedicated hardware. In light of this, this work presents a
hardware design that focuses on calculating the ∆MV values
utilized in the Affine Motion Estimation process, specifically for
refining the Affine Motion Vector. Synthesis results show that the
developed architecture can reach an accuracy of 99.95% while
dissipating 5.38 mW in an area of 222.84 Kgates, running at
55.08 MHz, the operational frequency required to process 120
frames per second of 4K resolution videos.

Index Terms—VVC, Affine Prediction, AMVP mode, Hard-
ware Design

I. INTRODUCTION

The demand for digital videos has increased significantly
in recent years. However, due to the substantial amount of
data required to represent digital videos, it has mandatory to
employ compression techniques to enable efficient storage and
transmission of video content. Currently, the Versatile Video
Coding (VVC) standard [1], released in 2020, is the state-of-
the-art on video compression.

To achieve efficient video coding is essential to explore
temporal redundancies, which refer to the similarity between
neighboring frames. Motion Estimation (ME) is the main
technique employed to deal with temporal redundancies. It
is present in the Inter-Frame prediction process of almost all
previous video coding standards. However, the VVC intro-
duces a novelty tool in the Inter-frame process called Affine
Motion Estimation [2]. Unlike conventional ME, which can
only represent translational movements, Affine ME offers
greater flexibility in Inter-Frame prediction by representing
complex movements like rotation, scaling, and skew [1]. The
substantial difference between the two versions of ME is that
the conventional ME uses a single Motion Vector (MV) to
describe the motion between two frames, while Affine ME
has the capability to employ two or three MVs to represent
the movement. [1].

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. It was
also financed in part by the Fundação de Amparo à pesquisa do Estado do
Rio Grande do Sul – Brasil (FAPERGS), and by the Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico – Brasil (CNPq).

Using Affine ME and other advanced tools, the VVC
standard achieves a reduction of up to 44% when compared
to its predecessor, the High-Efficiency Video Coding (HEVC)
[3]. Previous evaluations conducted by our research group have
demonstrated that disabling Affine ME results in a decrease
of 2.14% in compression efficiency [4].

In order to obtain the set of MVs that describe the complex
movement between two frames, an initial tuple of MVs is
inherited from the motion information of previously processed
tools or even from neighboring blocks. These inherited MVs
may not precisely capture the motion details. Therefore, the
VVC Test Model (VTM) [5], the reference software of the
VVC Standard, employs an iterative algorithm that optimize
and refine the set of MVs, seeking the best set of MVs
that better describe the motion [6]. This iterative algorithm
evaluates several sets of Affine MVs. After evaluating each set,
the obtained reconstructed block are processed regarding its
difference to the original block, which results in a ∆MV. When
the ∆MV is accumulated to the last set of MV evaluated, it
generates the new set of MVs to be evaluated, as it will be
described in Section II.

Due to the considerable computational complexity involved
in the iterative process of calculating the ∆MV, it becomes
essential to employ a dedicated hardware design to handle
it efficiently, particularly for real-time applications that target
battery-powered devices. In this context, this work proposes a
hardware design to calculate the ∆MV of Affine ME of the
VVC standard, which can process 128×128 size blocks. The
ASIC synthesis results for TSMC 40 nm show that for UHD
4K@120 fps, the architecture dissipates 5.38 mW with an area
of 222.84 Kgates, reaching an accuracy of 99.95%.

II. AFFINE MOTION ESTIMATION

The Affine ME is employed to capture and represent the
complex movement that occurs within digital videos. As in
conventional ME, Affine ME searches for blocks in previously
encoded frames that are similar to the block being currently
encoded. The VVC standard supports Affine ME with four and
six parameters. The Fig. 1 illustrates the different parameter
configurations used in Affine Motion Estimation (AME). In
(a), the Affine 4-parameters configuration is depicted, which
utilizes two Motion Vectors (MVs) located at the top corners



of the block. On the other hand, (b) represents the Affine 6-
parameters configuration, which employs three MVs, including
the MV from the bottom-left corner of the block in addition
to the two MVs at the top corners [7].

There are two modes to get the MVs to perform Affine
ME: Affine merge mode and Affine Advanced Motion Vector
Prediction (AMVP) mode [5]. In Affine merge mode, the
MVs are obtained from neighboring blocks without requiring
complex calculations. In contrast, the AMVP mode involves
an iterative algorithm that requires several operations [6]. The
AMVP algorithm will be detailed in the next subsection.

A. AMVP Algorithm

As previously mentioned, the AMVP Algorithm is responsi-
ble for defining the set of MVs that better describe the complex
motion of the current block regarding the reference frame. It
starts by evaluating the Affine with four parameters, and after it
evaluates the six parameters [5]. The essence of this algorithm
is to adjust the MVs aiming to minimize the mean square error
(MSE) between the current block and the prediction block.

AMVP Algorithm starts by inheriting a set of MVs from an
initial candidate. This initial candidate is used as the starting
point for the gradient-based algorithm that calculates a ∆MV,
which will be added to the previous MVs to generate a new set
of MVs to be tested [2]. These sets of MVs may be inherited
from the conventional ME tool previously applied over the
current block, or even from neighboring blocks that were
represented using either the conventional ME or the Affine
ME.

To evaluate the quality of each candidate set of MVs, the
AMVP reconstructs temporarily the current block using each
set of MVs. After the reconstruction, an error is calculated
by taking the difference between the current block and the
reconstructed block. This error represents the discrepancies
between the original block and the block generated using the
candidate MVs.

Subsequently, Sobel filters are applied two times over the
reconstructed block, producing a horizontal gradient block and
a vertical gradient block. The (1) and (2) originate each sample
of the horizontal gradient and vertical gradient, respectively.
In (1) and (2), the RB represents the Reconstructed Block,
while j e k represents the row and column of the sample
being filtered, respectively.

gradH[j][k] =(RB[j − 1][k + 1]−RB[j − 1][k − 1]+

(2 ∗RB[j][k + 1])− (2 ∗RB[j][k − 1])+

RB[j + 1][k + 1]−RB[j + 1][k − 1])

(1)

gradV [j][k] =(RB[j + 1][k − 1]−RB[j − 1][k − 1]+

(2 ∗RB[j + 1][k])− (2 ∗RB[j − 1][k])+

RB[j + 1][k + 1]−RB[j − 1][k + 1])

(2)

The gradient blocks obtained from applying the Sobel filter
are utilized in conjunction with the error value to calculate
the ∆MV values. This process involves constructing a matrix
with dimensions of 7×7 when using the 6-parameters model
or a 5×5 matrix when using the 4-parameters model. The
matrix coefficients are obtained using (3), where col and row

Current
Block

Current
Block

(a) (b)

MV2

MV1
MV1

MV2

MV3

Fig. 1. Affine ME with (a) Affine 4-Parameter and (b) Affine 6-Parameter.

represent each matrix position, ranging from 0 to 4 or 6,
according to the number of Affine parameters. The iC values
are given by the gradient values, as shown by (4) which givens
the iC values for the processing of the 6-parameters model.
Finally, the last matrix row is filled using (5).

mtCoeff [col + 1][row] =

CBH∑
j=0

CBW∑
k=0

int(iC[col] ∗ iC[row]) (3)

iC6param = [gradH[j][k],

(((k >> 2) << 2) + 2) ∗ gradH[j][k],

gradV [j][k],

(((k >> 2) << 2) + 2) ∗ gradV [j][k],

(((j >> 2) << 2) + 2) ∗ gradH[j][k],

(((j >> 2) << 2) + 2) ∗ gradV [j][k]]

(4)

mtCoeff [col+1][lastRow] =

CBH∑
j=0

CBW∑
k=0

int(iC[col]∗error[j][k])

(5)
The matrix of coefficients is actually a system of linear

equations that represents the relationship between the gradient
blocks and the error value. When solved, this matrix originates
the ∆MV values [2], which allows the estimation of the
optimal set of MVs. To solve this system, the Gaussian
elimination with partial pivoting method [8] is employed in
VTM software [5], as is explained in the next subsection.

B. Gaussian Elimination with Partial Pivoting

Gaussian Elimination with Partial Pivoting is a numerical
method used to solve systems of linear equations. In this
application, the process starts in column zero and row one,
then is performed the steps as follows:

1) Find the element whit the largest absolute value in the
current column, considering the rows below the current
position. This element is called a pivot.

2) If the pivot element is not in the current row, swap the
current row with the row that contains the pivot element.

3) Perform row operations to make all the elements below
the pivot equal zero. To do this, each coefficient below
the pivot’s row is recalculated according to (6).

4) Move to the next column and next row and repeat steps
1 to 3 until the system of equations is transformed into
an upper triangular form.



5) Solve the upper triangular system of equations by back-
ward substitution, starting from the last row and working
upwards.
newCoeff [col][row] =mtCoeff [col][row]−

(mtCoeff [col][pivotRow]∗
mtCoeff [pivotCol][row]/

pivotV alue)

(6)

The result of this process is an array whit four or six
elements, depending on the Affine parameters. Observing the
reference software of the VVC standard [5] can be seen that
there is a final processing that involves the size of the current
block to be performed over this array. The result of this process
is, finally, the ∆MV array.

Since that ∆MVs gives the difference between the sets of
MVs for evaluation, they are accumulated to the last set of
MVs, thus generating the new set of MVs for evaluation.
The process is repeated until the new MVs be identical to
the last one, in other words, until ∆MV equals zero, or until
the process reaches a limit of evaluated MVs [5]. According
to empirical studies, six to eight iterations should be enough
to find the optimal set of MVs [2] [5].

III. PROPOSED HARDWARE DESIGN

This section presents the architecture proposed to obtain
the ∆MV, required to process the Affine ME as performed
in VVC reference software. This architecture solves a linear
equation system by applying the Gaussian elimination with
partial pivoting. Thus, the developed hardware inputs are a 32-
bit coefficient matrix of size 7×7, that can be used as a 5×5
matrix just ignoring two rows and columns. The matrix’s size
depends on the 1-bit input Affine type, that defines the Affine
model used (4-parameters or 6-parameters). The architecture
also receives two 8-bit values that represent the width and
height of the current block. As output, the developed design
delivers a 19-bit ∆MV array with 6 or 4 values.

The complete architecture is shown in Fig. 2. As can be
seen, it is composed of four modules inside the Gaussian
Elimination with Partial Pivoting architecture, where each
one performs a step of the Gaussian elimination with partial
pivoting, plus one additional module to perform the Final Pro-
cessing according to the Current Block size [5]. The Identify
Pivot module receives the elements of the current column and
compares them in order to find the highest element in the
column, which will be the pivot element. The Identify Pivot
compares two elements at each clock cycle. The comparison
output is a 1-bit signal that informs which input has the higher
absolute value, and this bit is stored to be used for defining
the elements in the next comparisons on the next cycle. Once
the pivot is found, and if it is different from zero, the module
delivers the index of the line that contains it, otherwise, the
process stops and the ∆MV is considered a null array.

The index of the pivot element and the coefficient matrix
is the inputs of Swap Rows module. This structure is a set
of multiplexers that rearranges the matrix to ensure that the
pivot element is in the current row. This process is purely

combinational, then the output matrix goes to the Row Oper-
ations module, where the elements below the pivot are turned
to zero. This is performed by applying (6) to each element
below the pivot row and to the right of the pivot column. This
module takes one clock cycle to calculate each new coefficient,
therefore, up to 30 cycles can be necessary to calculate the new
elements.

The three processing from Identify Pivot, Swap Rows and
Row Operations modules must be repeated until all elements
below the main diagonal be zero, forming an upper triangular
matrix. That means processing these modules five times for
Affine 6-parameters and three times for Affine 4-parameters.
So, the upper triangular system follows to the Solve System
module to be solved by a backward substitution. This process
consists of first solving the last row and using its result
to solve the above row, working upwards until solving all
equations. Finally, the values obtained are submitted to the
Final Processing module. This module takes into account the
block size information and also converts the elements’ values
to integers, thus delivering the ∆MV.

All the modules in the architecture are synchronized by
the control module. The control module receives the Affine
type information and incorporates a cycle counter that helps
in coordinating and timing the flow of data between different
modules. To perform all the described operations and obtain
the ∆MV array, the proposed architecture may take up to 103
clock cycles to.

IV. ACCURACY ANALYSIS

Although the architecture’s inputs and outputs are integer
values, fractional values come up during the process of di-
vider operations. In addition, the several operations performed
between fractional values can introduce accumulative errors,
depending on the precision adopted by the system. So, the
accuracy of the fractional values depends on the resolution
adopted, which refers to the number of bits used to represent
the fractional components. Higher resolutions offer a more
precise representation of fractional values but also require
more area and power resources to be implemented.

Taking that into consideration, the proposed architecture
was implemented in VHDL using two different versions. One
version utilizes a 16-bit fractional resolution, while the other
version employs an 8-bit fractional resolution. Implementing
the architecture in different resolutions allows for a compari-
son of their respective trade-offs in terms of accuracy versus
resource requirements and power consumption.

The accuracy analysis was performed using ModelSim
Tool and real data related to 100k ∆MV operations from
the RaceHorses sequence [9]. Since each ∆MV operation
may generate four or six output values, the 100k operations
originate 434626 output values. Table I shows the accuracy
results of the two different versions. As can be seen, the 16-
bit version of the proposed architecture exhibits a high level
of accuracy that reaches 99.95% of the output values. Its
performance demonstrates precise and reliable functionality,
making it a suitable choice for demanding applications that



.

Swap
rows

Identify Pivot

Matrix of
coefficients

affine type

7x7

c
o

e
ff
C

o
m

p 6 p
iv

o
tR

o
w

Row Operations

x +

- /-

x /

Solve System deltaParameters[0]

deltaParameters[2]

x + <<2

+
<<2 ΔMV

+0.5

-0.5

CBWidth

CBHeight

6

Final ProcessingControl

Gaussian Elimination with Partial Pivoting

Get
Pivot
Row

(int)

Fig. 2. The proposed architecture to get the ∆MV values.

require accurate video processing. On the other hand, the 8-
bit version also showcases a relatively good level of accuracy,
achieving a success rate of nearly 90%.

TABLE I
ACCURACY ARCHITECTURE WITH DIFFERENT RESOLUTION

Fractional Resolution 8 16
Correct Outputs 388386 434390

Accuracy 89.36% 99.95%

V. SYNTHESIS RESULTS

As said, the proposed architecture was implemented in
VHDL. The two versions of the proposed architecture were
synthesized to an Application-Specific Integrated Circuit
(ASIC) using the Cadence RTL Compiler [10]. The synthesis
process was performed considering the 40 nm standard-cell
library provided by TSMC [11]. The target frequency for the
ASIC design was set at 55.08 MHz, ensuring the capability
to process blocks of size 128×128 samples in Ultra High
Definition (UHD) 4K (3840×2160) resolution at 120 frames
per second.

Table II shows the synthesis results of the proposed architec-
ture, where the area results consider the number of equivalent
gates, considering the area of a NAND2 (0.9408 µm2). As
expected, the 16-bit requires more resources in terms of both
area and power consumption compared to the 8-bit version.
The 16-bit version exhibits a significant increase of 56.70%
in terms of area utilization and a 47.72% increase in power
consumption when compared to the 8-bit version. On the other
hand, as presented in Table I, the 16-bit version reaches more
than 99.9% accuracy in the elements of ∆MV, while only
89.3% accuracy was obtained with 8-bit precision.

TABLE II
SYNTHESIS RESULTS OF THE TWO VERSIONS OF THE PROPOSED

ARCHITECTURE, RUNNING AT 55.08MHZ

Fractional Resolution 8 16
Leakage Power (mW) 0.169 0.256
Dynamic Power (mW) 3.477 5.130

Total Power (mW) 3.646 5.386
Cell Area (Kgates) 142.20 222.84

VI. CONCLUSIONS

This work presented dedicated hardware to calculate the
∆MV values, necessary to process the Affine ME as per-
formed in VVC reference software. Two different versions
of architecture, taking into account the fractional resolution,
were evaluated. The analysis and synthesis results show that
the 16-bit version provides higher accuracy, but it comes at
the expense of increased resource utilization and power con-
sumption. On the other hand, the 8-bit version offers a more
resource-efficient solution with slightly reduced accuracy.

Future works aim to improve this architecture, especially in
paralleling operations to reduce the number of clock cycles
required to process each matrix of coefficients and thus
increase the throughput, while also preparing this architecture
to be embedded in a hardware design to perform the complete
Affine ME.

REFERENCES

[1] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-
R. Ohm, “Overview of the versatile video coding (vvc) standard and
its applications,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 31, no. 10, pp. 3736–3764, 2021.

[2] L. Li, H. Li, D. Liu, Z. Li, H. Yang, S. Lin, H. Chen, and F. Wu, “An
efficient four-parameter affine motion model for video coding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 28,
no. 8, pp. 1934–1948, 2018.

[3] Siqueira, G. Correa, and M. Grellert, “Rate-distortion and complexity
comparison of hevc and vvc video encoders,” in 2020 IEEE 11th Latin
American Symposium on Circuits & Systems (LASCAS), 2020, pp. 1–4.

[4] P. H. R. Gonçalves, “Um esquema rápido baseado em aprendizado de
máquina para a predição interquadros do codificador de vı́deo vvc,”
Master’s thesis, Universidade Federal de Pelotas, 2021.

[5] A. Browne, Y. Ye, and S. Kim, “Algorithm description for versatile video
coding and test model 17 (vtm 17),” JVET-Z2002, July 2022.

[6] M. Martina, “Simplified affine motion estimation algorithm and ar-
chitecture for the versatile video coding standard,” Ph.D. dissertation,
Politecnico di Torino, 2022.

[7] B. Bross, J. Chen, S. Liu, and Y.-K. Wang, “Versatile video coding
editorial refinements on draft 10,” JVET-T2001, October 2020.

[8] W. Ford, “Chapter 11 - gaussian elimination and the lu decomposition,”
in Numerical Linear Algebra with Applications, W. Ford, Ed.
Boston: Academic Press, 2015, pp. 205–239. [Online]. Available:
www.sciencedirect.com/science/article/pii/B9780123944351000119

[9] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “Vtm common
test conditions and software reference configurations for sdr video,”
JVET-T2010, Teleconferência, October 2020.

[10] CADENCE. (2020) Cadence rtl compiler. [On-
line]. Available: https://www.cadence.com/content/cadence-
www/global/en US/home/training/all-courses/84441.html

[11] TSMC. (2008) 40nm technology. [Online].
Available: https://www.tsmc.com/english/dedicatedF
oundry/technology/logic/l 40nm


